STATE WILDLIFE GRANT PROJECT - FINAL REPORT # *Project T2 - 1 - 4* # STREAM CRAYFISHES OF NORTHWEST ARKANSAS WITH EMPHASIS ON THE STATUS AND DISTRIBUTION OF ORCONECTES WILLIAMSI By Brian K. Wagner¹, Christopher A. Taylor², and Mark D. Kottmyer¹ ¹Arkansas Game and Fish Commission 915 E. Sevier Street, Benton, AR 72015 ²Illinois Natural History Survey Center for Biodiversity and Ecological Entomology 1816 S. Oak Champaign, IL 61820 Presented to The Arkansas Game and Fish Commission June 28, 2007 | APPROVALS: | | |---|---------------| | Bi R. Wagner | June 28, 2007 | | Brian Wagner, Project Coordinator | Date | | | | | Steve Filipek, Programs Assistant Chief | Date | | | | | Mike Armstrong, Chief of Fisheries | Date | ## **Executive Summary** Orconectes williamsi is a rare stream-dwelling crayfish that is endemic to the upper White River basin of Arkansas and Missouri. This study surveyed a semi-random selection of stream sites in the Arkansas portion of this range in order to characterize the crayfish communities including Orconectes meeki, another species of interest; identify co-occurring fishes; and evaluate the status of O. williamsi in Arkansas. Collections of a total of 2,372 individual crayfish specimens were made at 68 sites, including 197 O. williamsi from 23 sites. O. meeki was the crayfish species most commonly associated with O. williamsi, occurring at 87% of sites occupied by O. williamsi. The fish species most commonly encountered in streams with O. williamsi, were Etheostoma spectabile, Campostoma anomalum, and Semotilus atromaculatus. O. williamsi was found in the smallest streams sampled, with coarse substrates and no aquatic vegetation. It showed a strong preference for riffle habitats. It is our opinion that the species is somewhat imperiled in Arkansas, and should be considered rare and vulnerable range-wide. ## Introduction Orconectes williamsi (Fitzpatrick 1966) is a stream-dwelling crayfish with a very limited distribution in headwater streams of the upper White River basin in Missouri and Arkansas. Taylor et al. (1996) consider it to be of "special concern" and The Nature Conservancy ranks it as G2, globally imperiled. It occurs in at least four counties in Missouri (Pflieger 1996) and its status in that state was recently reviewed (Westhoff et al. 2005, 2006). Given the lack of distributional and ecological information available to plan for the conservation of this species in Arkansas, a survey in this state is needed in close temporal proximity to the Missouri study to provide a complete picture of range-wide conservation status. Orconectes meeki is another species of interest. In fact, preliminary results of surveys in Missouri indicate that it was more rare in that state than O. williamsi (Westhoff et al. 2005). However, O. meeki has a much wider range in Arkansas (Williams 1954, Robison 2002). The objectives of this study were to determine baseline distribution and habitat information for *Orconectes williamsi*, characterize the crayfish fauna of the upper White River Basin, and document species associations. #### Methods ## Study Area and Site Selection This study focused on portions of the Upper White River and Bull Shoals Reservoir basins in northern Arkansas. Based on the National Hydrology Dataset (NHD), these two hydrologic units comprise 7,291 identified stream segments totaling 15,170 km. The Arkansas portion of these units includes parts of Benton, Boone, Carroll, Franklin, Madison, Marion, Newton, Searcy, and Washington counties. Since these areas are largely in private ownership, road access to sampling sites was particularly important. U. S. Census Bureau data on roads in these counties was used to identify stream segments that intersect roads using ArcMap GIS software – this resulted in the identification of 1,924 accessible segments. A semi-random subset of these segments was selected for sampling by generating a random number between 0 and 19 as a start point, and then every 20th segment listed in the pooled list of accessible stream segments was chosen. Since the NHD segments were generally adjacent to one another in order, this reduced selection of clustered sampling sites and provided a fairly uniform distribution of sites. This resulted in selection of 96 stream segments as potential sample sites. The selected stream segments were mapped on USGS 7.5 minute topographic maps using ArcMap and road accesses identified. Because headwater streams are more numerous and more easily bridged than larger streams, it was acknowledged that site selection was biased toward headwater streams, the habitat for the target species. Some of these headwater streams were intermittent and did not hold water or crayfish when visited for sampling. When this was the case, the site was replaced with a nearby site on a larger stream that was not selected for sampling. Two stream segments selected turned out to be erroneously assigned to the study basins, and were replaced in the same manner. Distribution data was supplemented with collections including *O. williamsi* from other areas and researchers. ### Sampling Methods All available habitats at sites were intensively sampled in using minnow seines or dip nets appropriately sized to the area being sampled. This was supplemented when possible by approximately 30 person-minutes of visual search and hand capture of crayfish by overturning rock slabs if present. At each sample site, latitude and longitude coordinates were recorded for the midpoint of the sample area. Other information recorded included water temperature, typical depth and width of pool and riffle habitats, predominant substrate sizes, and notes regarding aquatic vegetation, riparian vegetation, turbidity, and flow class. For this study, habitats were classified as pools if they had slower flow, undisturbed surface, and were the deeper habitats in the sample area; conversely, riffles were habitats with rapid flow, surface disturbance, and relatively shallow water. A sample data sheet is attached as Appendix 1. Crayfish data were recorded separately for distinct major habitat units (pools vs. riffles) at each site, as applicable. Crayfish were sorted by perceived species, sexed, and measured to the nearest mm carapace length (CL). A series of voucher specimens including males and females of each species were also taken. All voucher specimens were preserved in 70% ethanol, identification to species verified by the second author, and deposited in the collection of the Illinois Natural History Survey or the AGFC Nongame Aquatics Program reference collection. #### **Results** Ninety-six steam segments were targeted for sampling within the upper White River basin (Beaver Lake and Bull Shoals Lake watersheds). Due to lack of water or access, several sites were deleted or moved, resulting in samples actually being conducted at 68 sites. Sites sampled are mapped in Figure 1. Crayfish species collected are noted in Table 1 and fish species collected are noted in Table 2. A total of 2,372 crayfish specimens of nine different species were collected within the study area. The most commonly encountered species was *Orconectes neglectus neglectus*, occurring at 63.24% of sites sampled, followed by *O. meeki meeki* (52.94%), *O. williamsi* (33.82%), and *O. ozarkae* (32.35%) (Table 3). Mean lengths and sex distributions by species are displayed in Table 4. Length frequencies of individuals collected (carapace length in mm) are provided in Figures 2 – 5. *Cambarus hubbsi*, *O. longidigitis*, *O. nana*, *O. palmeri longimanus*, *O. virilis*, *Procambarus acutus*, and unidentified *Procambarus* sp. were found at 4 or fewer sites and were excluded from most analyses. Collections in this study included 197 specimens of *Orconectes williamsi* from 23 sites. *O. williamsi* was also documented by 12 additional specimens from two sites in the Elk River basin and one site in the Mulberry River basin, not included in these analyses. ## Crayfish Species Associations Three species were found to occur at sites with *Orconectes williamsi*, namely *O. neglectus neglectus*, *O. meeki meeki*, and *O. ozarkae* (Table 5). *O. williamsi*'s most common associate was O. m. meeki, occurring at 36 total sites and 87% of O. williamsi sites. O. n. neglectus, found at 43 total sites, was present at 26% of sites where O. williamsi was found. O. ozarkae, found at 22 sies, apparently avoided O. williamsi habitat, occurring with it only 4% of the time. Species associations with O. williamsi were also examined using the metrics of dominance, constancy, and fidelity (Table 6), as described by Pflieger (1978). O. williamsi was barely the dominant species where found, comprising 39.1% of the community compared to 38.5% for O. meeki. The least dominant species was O. ozarkae (8.5%), being collected with O. williamsi at only one site. Constancy results indicated that O. meeki (87.0%) and O. ozarkae (4.3%) were found most and least often at sites having O. williamsi, respectively. Fidelity estimates, incorporating all sampled sites regarless of O. williamsi's presence, were greatest for O. meeki (55.6%) and lowest for O. ozarkae (4.5%). O. ozarkae sites always had O. n. neglectus (100%), but O. n. neglectus was much more widely distributed (twice as many sites, only 50% had O. ozarkae). O. m. meeki sites most commonly had O. williamsi (56%) and often O. n. neglectus (36%), but never O. ozarkae (0%). ## Fish Species Associations Thirty fish species were found at one or more sites with *O. williamsi* (Table 2). The most commonly associated fish species were *Etheostoma spectabile* (74%), *Campostoma anomalum* (70%), *Semotilus atromaculatus* (52%), and *Luxilus pilsbryi* (35%). Sites with *O. williamsi* had an average of 4.57 fish species present, whereas those without *O. williamsi* had 7.29 fish species. This difference was statistically significant (t-test, p=0.0168). ## Habitat
Characteristics Table 7 provides a comparison of selected habitat variable observations from sites with *O. williamsi* and across all sites sampled. *O. williamsi* appears to occupy the smallest streams with coarser substrates and no aquatic vegetation. Most crayfish species collected seemed to prefer pools (Table 8), whereas *O. williamsi* and *O. nana* were usually found in riffles. *O. n. neglectus* and *O. ozarkae* appeared to generally use both habitats. #### **Discussion** #### Distribution Orconectes williamsi was described by Fitzpatrick (1966), who reported it as restricted to three sites in Madison County, Arkansas. Pflieger (1996) reported nine localities from the upper White River basin in Missouri, expanding it's known range much further north. While still only reported from 3 published sites in Arkansas, it was also found in additional locations in the vicinity (Henry Robison, pers. Comm..). Recent work by Westhoff et al. (2006) increased its documented range in Missouri to 27 sites, which, when combined with the 23 Arkansas sites documented in this study, provides a much better picture of the global distribution of this Ozark endemic. Its known range includes portions of Barry, Christian, Stone, and Taney counties in Missouri and Benton, Boone, Carroll, Madison, and Washington counties in Arkansas. Westhoff et al. (2005) and the Missouri Department of Conservation (Bob Distefano, pers. Comm.) consider *Orconectes meeki* to be a much rarer crayfish in Missouri, reporting it from only 4 stream segments during their study. In Arkansas it appears to be more common, as documented by the fact that we found them at 36 sites during this study and that their range in Arkansas includes much of the Ozark portion of the Arkansas and White river basins. Future work is needed to accurately reflect the status of this species, and both of its subspecies, in regions beyond the scope of this study. Other species collected during this study represented such small segments of their respective ranges that no meaningful distribution inferences can be made from these data. #### Species Associations Orconectes williamsi was found with O. meeki more commonly than with any other crayfish, which is consistent with the findings of Fitzpatrick (1966) and Westhoff et al. (2006). For comparison with the Missouri study by Westhoff et al. (2005), species associations with O. williamsi were examined (Table 6) using Pflieger's (1978) metrics of dominance, constancy, and fidelity. Arkansas O. williamsi were not as dominant (39.1%) where found, compared to Missouri (56%) populations. We found O. meeki (38.5%) to be second in dominance, while it was much less dominant in Missouri (5%). The second in dominance in Missouri was O. neglectus (28%), which was much less dominant in Arkansas (13.9%). The dominance of O. ozarkae was comparable in the two states (AR -8.5%, MO -9%), but in our study the species was represented by a high abundance at a single O. williamsi site. O. virilis was of low dominance in Missouri (2%) and not represented at Arkansas O. williamsi sites. Constancy results indicated that O. meeki was found most often at Arkansas O. williamsi sites (AR – 87.0%, MO - 17.6%), while O. neglectus was most constant in Missouri (AR – 26.1%, MO - 94.1%). O. neglectus was only present (n=3) at one O. williamsi site in the Boston Mountain Ecoregion, where it appears to be replaced by much higher populations of O. meeki than in the Ozark Highlands Ecoregion, where *O. neglectus* is abundant. Fidelity estimates were greatest for *O.* meeki in both states (AR -55.6%, MO -75%), indicating that it is the best species associate for indicating suitable habitat within the range of O. williamsi. We also looked at fishes found with *O. williamsi*. Our findings in this area were not surprising, considering that *O. williamsi* was found in the smallest streams sampled – in fact we failed to find them at some previously reported sites because the stream reaches were dry when we visited! Consistent with this, we found *O. williamsi* sites to be lower than the average fish diversity of sites sampled in the study, and usually having only central stonerollers, orangethroat darters, and creek chubs. #### Habitat Use O. williamsi is reported to inhabit "gravelly headwater creeks, spring branches, and cave streams" (Pflieger 1996). In Fitzpatrick's (1966) description, he notes that Orconectes williamsi was associated with "proportionately very large stones" in pools, while riffles yielded O. meeki. This description is not consistent with our findings, which show an association with riffles. Our results are consistent with the findings by Westhoff et al. (2006) that show association with shallow water and high current velocity. It is remotely possible that this discrepancy could be due to seasonal shifts in habitat use - Fitzpatrick collected in January, Westhoff et al. in April through August, and we in October through December. All three studies support association with cobble or larger substrates and our study and Westhoff et al. concur on a negative association with aquatic vegetation. *Orconectes williamsi* habitat can be characterized as small streams that are well-incised, with coarse substrate, shallow water, fast current, and riparian forest cover sufficient to restrict aquatic vegetation growth. We did, however, note an outlier to this description – collection BKW2004-087 was from a site on Leatherwood Creek that was a concrete-lined roadside ditch in downtown Eureka Springs with limited natural substrate. Crayfish density was low at this site, but *O. williamsi* was the dominant species. #### Recommendations Orconectes williamsi is presently not ranked for conservation status at the state level for Arkansas (www.natureserve.com, accessed 5-29-07). Westhoff et al. (2006) recommend a rank of imperiled (S2), after finding the species at 27 sites in Missouri. This is comparable to the 23 sites we found, and we propose that a rank of imperiled (S2) would also be appropriate for Arkansas. The current global rank of rare (G3) seems appropriate. # Acknowledgements Field assistance was provided by T. Anderson, S. Brown, K. Coffey, F. Leone, R. Limbird, M. Oliver, K. Shirley, and J. Stinnett of the Arkansas Game and Fish Commission; E. Inlander and D. Crosswhite of The Nature Conservancy; and S. Coughlan of Arkansas State University. C. Dillman and J. Ray of Saint Louis University assisted with one of the reported supplemental collections. #### **Literature Cited** - Fitzpatrick, J. F., Jr. 1966. A new crawfish of the genus *Orconectes* from the headwaters of the White River in Arkansas (Decapoda, Astacidae). Proc. of the Biol. Soc. of Washington. 79:145-150. - Pflieger, W. L. 1978. Distribution, status, and life history of the Niangua darter, *Etheostoma nianguae*. Missouri Department of Conservation Aquatic Series Report No. 16. Jefferson City. 25 pp. - Pflieger, W. L. 1996. The Crayfishes of Missouri. Missouri Dept. Cons., Jefferson City. 152 pp. - Robison, H. W. 2002. Computerization of the Crayfishes of Arkansas. Final Report Submitted to Arkansas Game and Fish Commission, Little Rock. 24 pp and associated database. - Taylor, C. A., M. L. Warren, Jr., J. F. Fitzpatrick, Jr., H. H. Hobbs III, R. F. Jezerinac, W. L. Pflieger, and H. W. Robison. 1996. Conservation and status of crayfishes of the United States and Canada. Fisheries 21(4): 25-38. - Westhoff, J. T., J. A. Guyot, and R. J. Distefano. 2005. A survey of the distribution of the imperiled Williams' crayfish (*Orconectes williamsi*) in the upper White River drainage of Missouri: Associations with multi-scale environmental variables. Missouri Department of Conservation, Final Report. Columbia, MO. 90 pp. - Westhoff, J. T., J. A. Guyot, and R. J. Distefano. 2006. Distribution of the imperiled Williams' crayfish (*Orconectes williamsi*) in the upper White River drainage of Missouri: Associations with multi-scale environmental variables. American Midland Naturalist 156(2): 273-288. Figure 2: Orconectes williamsi length frequency. Figure 3: Orconectes meeki meeki length frequency. Figure 4: Orconectes neglectus neglectus length frequency. Figure 5: Orconectes ozarkae length frequency. Table 1: Site locations and crayfish species and numbers collected by site. Collections highlighted in gray included *Orconectes williamsi*. Supplemental records outside study area are denoted by "*". | Collection # | Stream | Collection
Date | Longitude | Latitude | Cambarus hubbsi | Orconectes longidigitis | Orconectes nana | Orconectes meeki meeki | Orconectes neglectuks
neglectus | Orconectes ozarkae | Orconectes palmeri
longimanus | Orconectes virilis | Orconectes williamsi | Procambarus acutus | Unid. Procambarus | |--------------|-----------------------------|--------------------|-----------|----------|-----------------|-------------------------|-----------------|------------------------|------------------------------------|--------------------|----------------------------------|--------------------|----------------------|--------------------|-------------------| | BKW2004-028 | unnamed trib of White River | 10/4/2004 | -93.63557 | 35.82273 | | | | 12 | | | | | 3 | | | | BKW2004-029 | Kilgore Branch | 10/4/2004 | -93.70647 | 35.78671 | | | | 5 | | | | | 17 | | | | BKW2004-030 | Fleming Creek | 10/4/2004 | -93.78645 | 35.79686 | | | | 9 | | | | | | | | | BKW2004-031 | Osage Creek | 10/5/2004 | -93.30286 | 36.11073 | | | | 93 | | | | | | | | | BKW2004-032 | Boatright Creek | 10/5/2004 | -93.54436 | 36.10094 | | | | | 27 | | | | | | | | BKW2004-033 | Felkins Creek | 10/5/2004 | -93.51535 | 35.96103 | | | | 124 | 2 | | | | | | | | BKW2004-034 | tributary of Mill Creek | 10/6/2004 | -93.86790 | 35.73721 | | | | 30 | | | | | 6 | | | | BKW2004-035 | Kings River | 10/6/2004 | -93.58251 | 35.89365 | | | | 44 | | | | | 3 | | | | BKW2004-036 | Whorton Creek | 10/6/2004 | -93.66170 | 36.03901 | | 6 | | 15 | 9
						BKW2004-037	Huzzah Creek	10/13/2004	-93.03061	36.21012					230	63							BKW2004-038	East Fork Crooked Creek	10/13/2004	-93.11015	36.16759					12	16							BKW2004-039	West Fork Crooked Creek	10/13/2004	-93.12332	36.18422					13	26							BKW2004-040	West Fork Clear Creek	10/14/2004	-92.91327	36.10796					25	28							BKW2004-041	Hog Creek	10/14/2004	-92.96464	36.15104					11	13							BKW2004-042	Clear Creek	10/15/2004	-92.82650	36.22405					8	68							BKW2004-043	Hampton Creek	10/15/2004	-92.82175	36.21714					21	12							BKW2004-044	Crooked Creek	10/20/2004	-92.92242	36.23405					18	20							BKW2004-045	Mill Branch	10/20/2004	-92.90609	36.30292					6	15							BKW2004-046	East Sugarloaf Creek	10/20/2004	-92.80988	36.34929					56								BKW2004-052	Long Creek	11/8/2004	-93.29630	36.26486					24	26							BKW2004-053	Dry Creek	11/8/2004	-93.35445	36.33036					11	76							BKW2004-054	Deshield Fork	11/9/2004	-92.89559	36.40635		1			1	1							BKW2004-055	Sugarloaf Creek	11/9/2004	-92.89559	36.40982					35	32		1					BKW2004-056	Brushy Fork Creek	11/10/2004	-92.67531	36.33711					43	32							BKW2004-057	Shakerag Creek	11/10/2004	-92.66260	36.18032					4	3							BKW2004-058	Mill Creek	11/10/2004	-92.67857	36.19315					21	9							BKW2004-059	Prairie Creek	11/15/2004	-94.10339	36.33278			19	1	32								Collection #	Stream	Collection Date	Longitude	Latitude	Cambarus hubbsi	Orconectes longidigitis	Orconectes nana	Orconectes meeki meeki	Orconectes neglectus neglectus	Orconectes ozarkae	Orconectes palmeri longimanus	Orconectes virilis	Orconectes williamsi	Procambarus acutus	Unid. Procambarus		--------------	-----------------------------	--------------------	-----------	----------	-----------------	-------------------------	-----------------	------------------------	--------------------------------	--------------------	----------------------------------	--------------------	----------------------	--------------------	-------------------		BKW2004-060	Brush Creek	11/15/2004	-93.94791	36.13147		1		2						<u> </u>			BKW2004-061	Unnamed tributary	11/16/2004	-94.03355	36.03067							1			2	47		BKW2004-062	Stout Spring Branch	11/16/2004	-94.16228	36.04855				6	6								BKW2004-063	West Fork White River	11/16/2004	-94.17332	35.97896				9	3					<u> </u>			BKW2004-064	Trib. of W Fork White River	11/22/2004	-94.19118	35.94394				7	3				9				BKW2004-065	Unnamed spring branch	11/23/2004	-93.89050	36.18173				15						L'			BKW2004-066	War Eagle Creek	11/23/2004	-93.85680	36.20218					11								BKW2004-067	Pine Creek	11/23/2004	-93.69450	36.20042				9	32								BKW2004-068	Brush Creek	11/23/2004	-93.88148	36.09062				18						L'			BKW2004-069	Cherry Creek	11/23/2004	-93.89997	36.04985				15									BKW2004-070	Cricket Creek	12/2/2004	-93.21907	36.46222					1					L'			BKW2004-071	Blevins Hollow	12/2/2004	-93.29372	36.41960					8					L'			BKW2004-072	Yocum Creek	12/2/2004	-93.35641	36.45444					23	43							BKW2004-073	Callens Branch	12/2/2004	-93.35203	36.36753					8	1				<u> </u>			BKW2004-074	Barren Fork	12/3/2004	-93.09570	36.41999					8	43			1				BKW2004-075	Mill Hollow	12/3/2004	-93.11344	36.33128					1				20				BKW2004-076	Wolf Creek	12/3/2004	-93.13675	36.30125					24								BKW2004-077	White Oak Creek	12/3/2004	-92.99525	36.27831					10					<u> </u>			BKW2004-078	Hutchins Creek	12/6/2004	-94.07706	35.84777				16					1				BKW2004-079	Riley Creek	12/6/2004	-94.14201	35.83952				5					11				BKW2004-080	Trib. of W Fork White River	12/6/2004	-94.12405	35.87219				6					5				BKW2004-081	Peach Branch	12/7/2004	-93.98595	35.87267				1					30				BKW2004-082	Trib. of Fritts Creek	12/7/2004	-93.93079	35.94046				6					12				BKW2004-083	Trib. of War Eagle Creek	12/7/2004	-93.73191	36.02557									6				BKW2004-084	Jackson Creek	12/7/2004	-93.74547	35.95602				15					14				BKW2004-085	Trib.of Drakes Creek	12/7/2004	-93.83117	35.98109				7					15				BKW2004-086	Middle Fork White River	12/9/2004	-93.99018	35.86267				14					6				Collection #	Stream	Collection Date	Longitude	Latitude	Cambarus hubbsi	Orconectes longidigitis	Orconectes nana	Orconectes meeki meeki	Orconectes neglectus neglectus	Orconectes ozarkae	Orconectes palmeri longimanus	Orconectes virilis	Orconectes williamsi	Procambarus acutus	Unid. Procambarus		--------------	---------------------------------------	--------------------	-----------	----------	-----------------	-------------------------	-----------------	------------------------	--------------------------------	--------------------	----------------------------------	--------------------	----------------------	--------------------	-------------------		BKW2004-087	Leatherwood Creek	12/15/2004	-93.73296	36.41032				4					7				BKW2004-088	Keels Creek	12/15/2004	-93.69500	36.36353				3					12				BKW2004-089	Pine Creek	12/15/2004	-93.65939	36.41402				5					4				BKW2004-090	Warden Creek	12/15/2004	-93.54617	36.34565				1	31				4				BKW2004-091	Clabber Creek	12/15/2005	-93.57020	36.40859				7									BKW2004-092	Lundy Cove	12/16/2004	-93.53770	36.31207				4	20								BKW2004-093	Cedar Creek	12/16/2004	-93.54392	36.22679				3	9				6				BKW2004-094	Dry Fork Creek	12/16/2004	-93.53813	36.16791				1	61								BKW2004-095	Dog Branch	12/16/2004	-93.38892	36.18707				6					4				BKW2004-096	Osage Creek	12/16/2004	-93.49690	36.29973					21	2							BKW2004-097	Little Indian Creek	12/17/2004	-93.43978	36.48871				4	15				1				BKW2004-098	Yocum Creek	12/17/2004	-93.44534	36.37862					61	25							BKW2004-099	Long Creek	12/17/2004	-93.28893	36.33719	7	7		1	6								BKW2004-100	Bear Creek Springs	12/17/2004	-93.17879	36.29786					33	2																													_												bkw2005-027*	Washita Creek	5/24/2005	-93.59897	35.68332				13					1				bkw2005-069*	spring trib to Spanker Branch	10/26/2005	-94.15937	36.44589					28				10				bkw2005-084*	Spring run trib of Big Sugar Creek	11/17/2005	-94.08805	36.49162					17				1			Table 2: Fish species collected by site. Collections highlighted in gray included Orconectes williamsi.		Total Number of Species Collected	Сатроstота anomalum	Campostoma oligolepis	Cyprinella galactura	Cyprinella whipplei	Hybopsis amblops	Luxilus chrysocephalus	Luxilus pilsbryi	Nocomis biguttatus	Notemigonus crysoleucas	Notropis boops	Notropis nubilus	Notropis percobromus	Notropis telescopus	Phoxinus erythrogaster	Pimephales notatus	Pimephales promelas	Semotilus atromaculatus	Catostomus commersoni	Erimyzon oblongus	Hypentelium nigricans	Moxostoma duquesnei	Moxostoma erythrurum		--------------------------	--------------------------------------	---------------------	-----------------------	----------------------	---------------------	------------------	------------------------	------------------	--------------------	-------------------------	----------------	------------------	----------------------	---------------------	------------------------	--------------------	---------------------	-------------------------	-----------------------	-------------------	-----------------------	---------------------	----------------------		Collection #	Total Specie	Camposte	Campost	Cyprine	Cyprin	Hybop	$Luxilus\ c$	Luxil	Nocom	Notemigon	Notre	Notro	Notropis	Notrop	Phoxinus	Pimepl	Pimepha	Semotilus	Catostom	Erimyz	Hypentei	Moxosto	Moxostor		BKW2004-028	7	X						X										X							BKW2004-029	1	Λ						Λ										X							BKW2004-029	10	X						X				X						X							BKW2004-030	2	X						Λ				Λ						Λ							BKW2004-031	8	X						X				X			X			X							BKW2004-033	4	71						X				X			A			<i>1</i> 1							BKW2004-034	4	X						A				Λ						X		X					BKW2004-035	5	X																X		71					BKW2004-036	9	X			X			X				X				X									BKW2004-037	6	X							X						X										BKW2004-038	2							X																	BKW2004-039	13	X	X				X	X				X			X	X									BKW2004-040	6	X													X			X							BKW2004-041	9	X						X				X			X			X																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
		BKW2004-042	22	X		X			X	X	X		X	X				X					X				BKW2004-043	17	X	X	X			X	X	X			X				X					X				BKW2004-044	7	X						X																	BKW2004-045	6		X						X						X										BKW2004-046	5		X					X							X										BKW2004-052	13	X	X								X	X				X						X			BKW2004-053	11	X					X	X				X			X			X	X						BKW2004-054	12	X						X																	BKW2004-055	15	X	X			X		X	X			X													BKW2004-056	8		X			X		X	X																BKW2004-057	5	X													X			X							BKW2004-058	9	X						X	X			X			X			X							BKW2004-059 ¹	9	X								X					X								<u> </u>									1		1		1	ı					1		I	l						--------------------------	----------------	-----------------	----------------	----------------------	--------------------	--------------------	------------------	------------------	-------------------	--------------------------	-------------------	-----------------	---------------------	-------------------	---------------------	----------------------	-----------------------	------------------------	----------------------	-----------------------	-------------------	------------------------	-----------------------	-------------------			Ameiurus melas	Noturus albater	Noturus exilis	Labidesthes sicculus	Fundulus catenatus	Fundulus olivaceus	Gambusia affinis	Cottus carolinae	Cottus hypselurus	Ambloplites constellatus	Lepomis cyanellus	Lepomis gulosus	Lepomis macrochirus	Lepomis megalotis	Lepomis microlophus	Micropterus dolomieu	Micropterus salmoides	Etheostoma blennioides	Etheostoma caeruleum	Etheostoma flabellare	Etheostoma juliae	Etheostoma punctulatum	Etheostoma spectabile	Etheostoma zonale		Collection #										,								·						<u> </u>		BKW2004-028											X								X			X	X			BKW2004-029																										BKW2004-030			X		X						X							X				X	X	<u> </u>		BKW2004-031																							X	<u> </u>		BKW2004-032					X			X											X					<u> </u>		BKW2004-033					X	X																		<u> </u>		BKW2004-034																							X			BKW2004-035													X	X									X			BKW2004-036					X		X							X									X			BKW2004-037					X			X															X	<u> </u>		BKW2004-038																							X			BKW2004-039					X	X		X										X	X				X			BKW2004-040									X		X												X			BKW2004-041					X						X		X										X	<u> </u>		BKW2004-042		X	X		X	X	X							X	X	X	X	X	X		X			X		BKW2004-043			X		X	X								X	X	X			X				X			BKW2004-044					X	X	X												X				X			BKW2004-045								X												X			X			BKW2004-046								X															X			BKW2004-052			X	X	X	X								X					X				X			BKW2004-053					X	X					X												X			BKW2004-054				X	X	X					X		X	X			X		X			X	X			BKW2004-055					X	X				X	X		X				X		X			X	X			BKW2004-056					X	X										X			X							BKW2004-057						X																	X			BKW2004-058																			X			X	X			BKW2004-059 ¹						X	X		X		X		X										X			Collection #	Total Number of Species Collected	Campostoma anomalum	Campostoma oligolepis	Cyprinella galactura	Cyprinella whipplei	Hybopsis amblops	Luxilus chrysocephalus	Luxilus pilsbryi	Nocomis biguttatus	Notemigonus crysoleucas	Notropis boops	Notropis nubilus	Notropis percobromus	Notropis telescopus	Phoxinus erythrogaster	Pimephales notatus	Pimephales promelas	Semotilus atromaculatus	Catostomus commersoni	Erimyzon oblongus	Hypentelium nigricans	Moxostoma duquesnei	Moxostoma erythrurum		--------------------------	--------------------------------------	---------------------	-----------------------	----------------------	---------------------	------------------	------------------------	------------------	--------------------	-------------------------	----------------	------------------	----------------------	---------------------	------------------------	--------------------	---------------------	-------------------------	-----------------------	-------------------	-----------------------	---------------------	----------------------		BKW2004-060	8						X	X				X													BKW2004-061	4	X																							BKW2004-061	4	X			X													X							BKW2004-063	22	X			X		X	X			X	X	X			X		Λ			X	X	X		BKW2004-064	17	X			<u> </u>		21	X			X	X	A			X					А	X	X		BKW2004-065	2	X						21			21	21			X	21						21	21		BKW2004-066 ²	0														71										BKW2004-067	6	X						X							X			X							BKW2004-068	3	X																X				i			BKW2004-069	3	X																							BKW2004-070	7	X					X	X							X		X								BKW2004-071	6	X						X																	BKW2004-072	6							X	X																BKW2004-073	6	X						X	X						X										BKW2004-074	7	X						X																	BKW2004-075 ³	0																								BKW2004-076	4	X													X			X							BKW2004-077	2	X																				ш			BKW2004-078	3	X																X							BKW2004-079	2																	X							BKW2004-080	9	X						X				X						X				X			BKW2004-081	2	X																X							BKW2004-082	3							X										X							BKW2004-083	2	X																							BKW2004-084	3	X																X							BKW2004-085	2	X																							BKW2004-086	4	X																X																	Si								S	ı			и				--------------------------	----------------	-----------------	----------------	----------------------	--------------------	--------------------	------------------	------------------	-------------------	--------------------------	-------------------	-----------------	---------------------	-------------------	---------------------	----------------------	-----------------------	------------------------	----------------------	-----------------------	-------------------	------------------------	-----------------------	-------------------			as	er	S	Labidesthes sicculus	Fundulus catenatus	Fundulus olivaceus	nis	ae	rus	Ambloplites constellatus	llus	sn.	Lepomis macrochirus	Lepomis megalotis	Lepomis microlophus	Micropterus dolomieu	Micropterus salmoides	Etheostoma blennioides	Etheostoma caeruleum	Etheostoma flabellare	iae	Etheostoma punctulatum	Etheostoma spectabile	Etheostoma zonale			Ameiurus melas	Noturus albater	Noturus exilis	sicc	ıten	iναα	Gambusia affinis	Cottus carolinae	Cottus hypselurus	nst	Lepomis cyanellus	Lepomis gulosus	roc	gal	rolo	dolc	alm	lenn	aerı	labe	Etheostoma juliae	ınctı	ресі	102			rus	ıs a	sn.	hes	s cc	lo s	ısia	car	hyp	o Si	s cy	is g	тас	e me	mic	.ns	s sn.	a bi	ıa c	na f	пио	nd r	na s	эта			ıeiu	turi	otuı	lest	lulu	lulu	nqu	tus	tns i	olite	эті,	пои	nis	mi	nis	pteı	oter	tom	ton	stor	iost	nuo.	ston	osta			An	No	N	abia	'n'n	nn	Gai	Coi	Cot	toją	də ₇	Lep	ioda	repo	iodi	icro	$cro_{ m l}$	soə	reor	heo	Etha	eosi	heo,	Ethe		G-11				T	I	I				Am	,		$T\epsilon$	<i>'</i>	$\Gamma\epsilon$	M	Mi	Eth	Etl	Et	,	Eth	Et	I		Collection #						X		X				X	X						X			 				BKW2004-060						Λ		Λ				Λ	Λ						Λ			<u> </u>				BKW2004-061							X				X											X				BKW2004-062																						<u> </u>	X			BKW2004-063			X	X		X	X							X			X	X	X			X	X	X		BKW2004-064			X		X	X					X		X	X	X		X					X	X			BKW2004-065																						<u> </u>				BKW2004-066 ²																						L'				BKW2004-067								X														<u> </u>	X			BKW2004-068																						<u> </u>	X			BKW2004-069	X																						X			BKW2004-070					
														X	X			BKW2004-071								X			X								X				X			BKW2004-072			X					X											X				X			BKW2004-073											X											X				BKW2004-074			X		X														X	X			X			BKW2004-075 ³																										BKW2004-076									X																	BKW2004-077								X																		BKW2004-078																							X			BKW2004-079																							X			BKW2004-080			X								X			X									X			BKW2004-081																										BKW2004-082																							X			BKW2004-083																						X				BKW2004-084																							X			BKW2004-085																							X			BKW2004-086			X																				X			Collection #	Total Number of Species Collected	Campostoma anomalum	Campostoma oligolepis	Cyprinella galactura	Cyprinella whipplei	Hybopsis amblops	Luxilus chrysocephalus	Luxilus pilsbryi	Nocomis biguttatus	Notemigonus crysoleucas	Notropis boops	Notropis nubilus	Notropis percobromus	Notropis telescopus	Phoxinus erythrogaster	Pimephales notatus	Pimephales promelas	Semotilus atromaculatus	Catostomus commersoni	Erimyzon oblongus	Hypentelium nigricans	Moxostoma duquesnei	Moxostoma erythrurum		--------------------------	--------------------------------------	---------------------	-----------------------	----------------------	---------------------	------------------	------------------------	------------------	--------------------	-------------------------	----------------	------------------	----------------------	---------------------	------------------------	--------------------	---------------------	-------------------------	-----------------------	-------------------	-----------------------	---------------------	----------------------		BKW2004-087	4																								BKW2004-088 ³	0																								BKW2004-089 ³	0																								BKW2004-090	11	X	X	X			X	X				X		X	X										BKW2004-091	5	X					X	X																	BKW2004-092	7		X					X																	BKW2004-093	8	X					X	X		X					X			X							BKW2004-094	5							X																	BKW2004-095	7	X						X				X		X											BKW2004-096	6		X									X													BKW2004-097	4	X													X										BKW2004-098	5							X							X								 		BKW2004-099	6	X	X					X															 		BKW2004-100	3																						 																											bkw2005-027 ³	0																								bkw2005-027		X													X											3	Λ													X										bkw2005-084	3														Λ										Collection #	Ameiurus melas	Noturus albater	Noturus exilis	Labidesthes sicculus	Fundulus catenatus	Fundulus olivaceus	Gambusia affinis	Cottus carolinae	Cottus hypselurus	Ambloplites constellatus	Lepomis cyanellus	Lepomis gulosus	Lepomis macrochirus	Lepomis megalotis	Lepomis microlophus	Micropterus dolomieu	Micropterus salmoides	Etheostoma blennioides	Etheostoma caeruleum	Etheostoma flabellare	Etheostoma juliae	Etheostoma punctulatum	Etheostoma spectabile	Etheostoma zonale		--------------------------	----------------	-----------------	----------------	----------------------	--------------------	--------------------	------------------	------------------	-------------------	--------------------------	-------------------	-----------------	---------------------	-------------------	---------------------	----------------------	-----------------------	------------------------	----------------------	-----------------------	-------------------	------------------------	-----------------------	-------------------		BKW2004-087								X											X			X	X			BKW2004-088 ³																										BKW2004-089 ³																										BKW2004-090					X														X				X			BKW2004-091																						X	X			BKW2004-092								X						X					X			X	X			BKW2004-093																			X				X			BKW2004-094								X											X	X			X			BKW2004-095								X														X	X			BKW2004-096		X	X																X		X					BKW2004-097									X														X			BKW2004-098								X											X				X			BKW2004-099								X											X					X		BKW2004-100									X										X				X																											<u> </u>		2																										bkw2005-027 ³																										bkw2005-069																				X						bkw2005-084								X												X					# Footnotes: - 1- Fish species list compiled from 2003 sample at same site. - 2- No fish collected during this sample due to high flow. 3- No fish collected during this sample.		Cambarus hubbsi	Orconectes longidigitis	Orconectes nana	Orconectes meeki meeki	Orconectes neglectus neglectus	Orconectes ozarkae	Orconectes palmeri longimanus	Orconectes virilis	Orconectes williamsi	Procambarus acutus	Unid. Procambarus		------------------------	-----------------	-------------------------	-----------------	------------------------	-----------------------------------	--------------------	----------------------------------	--------------------	----------------------	--------------------	-------------------		Total # of individuals	7	15	19	523	1004	556	1	1	197	2	47		% of individuals	0.30	0.63	0.80	22.05	42.33	23.44	0.04	0.04	8.31	0.08	1.98		# of sites	1	4	1	36	43	22	1	1	23	1	1		% of sites	1.47	5.88	1.47	52.94	63.24	32.35	1.47	1.47	33.82	1.47	1.47		Dominance (%)	-	-	-	38.49	13.89	8.53	-	-	39.09	-	-																											Table 4: Crayfish mean length and gender by species.	Species (N assigned to a gender)	Mean Carapace Length (CL)	Standard Deviation CL	Males	Females		----------------------------------	---------------------------	-----------------------------	--------------	----------------		C. hubbsi (7)	28.7 mm	4.5	5 (71%)	2 (29%)		O. longidigitis (14)	40.7 mm	10.9	6 (43%)	8 (57%)		O. m. meeki (519)	19.8 mm	5.5	251 (48%)	268 (52%)		O. nana (19)	19.9 mm	1.9	2 (11%)	17 (89%)		O. n. neglectus (1008)	20.5 mm	7.3	528 (52%)	480 (48%)		O. ozarkae (555)	20.0 mm	4.5	207 (37%)	348 (63%)		O. palmeri longimanus (1)	24 mm	-	0 (-)	1 (-)		O. virilis (1)	22 mm	-	1 (-)	0 (-)		O. williamsi (192)	16.5 mm	3.1	110 (57%)	82 (43%)		Procambarus sp. (19)	10.6 mm	2.7	4 (21%)	15 (79%)	Table 5: Species associations for most commonly encountered species.		Orconectes meeki meeki	Orconectes neglectus neglectus	Orconectes ozarkae	Orconectes williamsi		--------------------------------	---------------------------	-----------------------------------	--------------------	----------------------		total # sites occupied	36	43	22	23		% of sites co-occurring with:						Orconectes meeki meeki	100	30	0	87		Orconectes neglectus neglectus	36	100	100	26		Orconectes ozarkae	0	51	100	4		Orconectes williamsi	56	14	5	100	Table 6: Further analysis of *Orconectes williamsi* species associations, including dominance, constancy, and fidelity, after Pflieger (1978). Dominance = the proportion of all crayfish collected at sites with *O. williamsi* that are the given species. Constancy = the proportion of *O. williamsi* sites also having the given species. Fidelity = the proportion of sites having the given species that also have *O. williamsi*.		Orconectes meeki meeki	Orconectes neglectus neglectus	Orconectes ozarkae	Orconectes williamsi		------------------------------------	---------------------------	-----------------------------------	--------------------	----------------------		Dominance (%) at O. williamsi						sites	38.5	13. 9	8.5	39.1		Constancy (%) at O. williamsi						sites	87.0	26.1	4.3	_		Fidelity (%) at O. williamsi sites	55.6	14.0	4.5	-		Table 7: Comparison of selected habitat characteristics at sites with <i>O. williamsi</i> and all sites sampled.			--	--																							Habitat Characteristic	At All Sites Sampled	At Sites with O. williamsi		---	----------------------	----------------------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
Described as "clear" (very low turbidity)	84%	70%		No aquatic vegetation present	69%	91%		Cobble/boulder as dominant substrate	15%	39%		Stream width < 10 m	68%	87%	Table 8: Crayfish occurrence in pool habitats, by species.	Species (N, sites)	% found in pools*		---	-------------------		Cambarus hubbsi (7, 1)	100%		Orconectes longidigitis (14, 4)	100%		Orconectes meeki meeki (536, 37)	76%		Orconectes nana (19, 1)	11%		Orconectes neglectus neglectus (1009, 39)	36%		Orconectes ozarkae (556, 22)	40%		Orconectes palmeri longimanus (1, 1)	100%		Orconectes virilis (1, 1)	100%		Orconectes williamsi (192, 23)	21%		Procambarus sp. (59, 1)	100%	$[*]Includes\ collections\ assigned\ to\ pool\ or\ riffle\ habitats\ only.$																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		